Applications: The EverSeam panel is an architectural panel that is ideal for residential and light commercial applications. It can be used for roofing, mansards, or fascias. EverSeam should be applied over a solid substrate; however, in certain applications can be applied over open framing 18” on center. There are certain minimum, live, snow, dead, collateral, and wind loads that a roof must generally be designed to support. Consult local building officials to determine the appropriate building design load requirements. A professional engineer should be consulted for all roof system designs. It is the buyer’s responsibility to verify all applicable code requirements, check all measurements, and determine suitability of product for job. To avoid panel distortion use a properly aligned and uniform substructure.

Note: Oil canning in the flat area of the panels is common to the industry and does not affect the integrity of the panel. Therefore, oil canning is not a reason for rejection.

Minimum Slope: The minimum recommended slope for the EverSeam panel is 4:12. EverSeam is designed to be utilized over solid substrate. Plywood (5/8” min.), applied with a 30# felt moisture barrier (or an Ice and Water Shield when required by Local Building Codes) between the substrate and the EverSeam panel is ideal.

Finishes: The EverSeam panel is available with a prepainted Kynar®/Trinar finish. Kynar® carries a 35-year limited warranty. Please see the EverSeam color chart for stock colors. EverSeam is also available in Acrylic Coated Bare Galvalume®. Acrylic Coated Bare Galvalume® carries a 25-year limited warranty. On high visibility applications, bare Galvalume® is not recommended. Consult Everlast for Warranty information.

Thickness: 24 Gauge

Weight: 126 lbs. per square or 2.05 lbs. per LF.

Length: Minimum panel length is 5’-0”. Maximum recommended panel length is 32’-0”. Longer panels require additional consideration in packaging, shipping, and erection. Please consult Everlast for recommendations. Panels do not endlap.

Width: 20” (+ or - 1/4”) coverage with a 1 1/2” rib height.
Handling

A. Do not lift panels from ends while flat. Lift the panels on edge when moving individual panels or when moving panels onto the roof.

B. If the material is not to be used immediately, it should be stored in a dry place. Moisture trapped between sheets may cause damage to the paint system. The paint system may become soft or water stains may appear which can detract from the appearance and affect the service life of the material. To avoid problems store the materials in a well ventilated dry area. Stack the materials in an incline position. DO NOT USE PLASTIC TO COVER MATERIALS. THIS CAN CAUSE SWEATING OR CONDENSATION!

C. While unloading, all bundles must be lifted from the center. Do not unload in a jerking or bouncing fashion. Panels greater than 25’0” long should be unloaded using a spreader bar to prevent panels from bending.

D. Although the paint coating is tough, dragging panels across the surface of one another will almost certainly mar the finish.

Right Way
Proper design and installation of vapor barriers and ventilation systems are important to prevent condensation and the resulting problems of moisture damage and loss of insulation efficiency. Condensation occurs when moisture-laden air comes in contact with a surface temperature equal to or below the dew point of the air. This phenomenon creates problems that are not unique with metal buildings; these problems are common to all types of construction. In addition to providing resistance to heat transfer, insulation can also protect against condensation forming on cold surfaces, either inside the building or within the wall/roof system cavity. The arrangement of the building’s insulation system and vapor retarder is the responsibility of the building designer. These are some basic guidelines to help control condensation:

1. The insulation should have a vapor retarder face on the “warm” side of the insulation. For most buildings, this means that the vapor retarder is on the inside surface (toward the building’s interior).

2. The thickness of the insulation must be designed to maintain the temperature of the vapor retarder above the interior dew point, using the worst-case expected outside temperature.

3. All perimeter conditions, seams, and penetrations of the vapor retarder must be adequately sealed in order to provide a continuous membrane to resist the passage of water vapor.

4. Building ventilation, whether by gravity ridge vent, poweroperated fans, or other means, contributes significantly to reduced condensation. The movement of air to the outside of the building reduces the interior level of vapor pressure. On buildings that have an attic space or are being retrofitted with a metal roofing system, vents should be placed at both the eave and peak of the roof in order to prevent a buildup of moisture (humidity) in the attic space. Contact your local building code officials or an engineer on proper ventilation practices for your area.
Safety:
Always work safely when installing metal products. Use extreme caution on the roof at all times, and wear gloves and safety glasses to avoid injury. Hearing protection should be used when power-cutting metal panels. Do not walk on panels until all the fasteners are installed. Metal panels are slippery when wet, dusty, frosty, or oily. Do not attempt to walk on a metal roof under these conditions. Wear softsoled shoes to improve traction and to minimize damage to the paint finish. Always be aware of your position on the roof relative to any roof openings, roof edges, co-workers, and penetrations. Installing metal panels on a windy day can be dangerous and should be avoided. Consult OSHA guidelines for more complete safety requirements.

Cutting Steel Panels:
Steel panels may be cut with straight-cut snips, electric or pneumatic shears, a portable profile shear, or an electric nibbler. Some installers prefer using a circular saw with a metal cutting abrasive blade. This method may be faster, but it has some drawbacks:

1. Saw cut edges are jagged and unsightly and tend to rust more quickly than sheared edges.
2. Saw cutting produces hot metal filings that can embed in the paint and cause rust marks on the face of the panel.
3. Panels to be saw cut must be turned face down and cut in a location down-wind and well away from the building and other panels to avoid embedment of metal filings on other panels.
4. Saw cut panels must be thoroughly wiped to ensure the removal of all metal filings.
5. Saw cutting burns the paint and galvanizing at the cut edge, leading to the onset of edge rust.

Touch Up Paint:
Touch-up paint is used to cover and protect unexpected scratches on the paint finish that may occur during installation of panel. Touch-up paint will not weather as well or at the same rate as the original coating or finish. When applying, use in small inconspicuous and separate areas. Test in an area that will not be noticeable.
Eave Preparation

Notching Panel End

Engaging Hemming Tool

Forming Open Hem

Panel Engagement

Our Name Says It All

EverSeam 20
Panel Engagement

EverSeam 20

Panel Clip Installation
recommended every 24”

Ultra Low Profile Screw
one screw per clip as shown above

Installed Panel Cross Section
Clip
Everseam, field bent
Ultra Low Profile Woodscrew
Tube Sealant
Vapor Barrier
Residential Eave Trim
RIDGE / HIP

- Clip
- Everseam
- Pop Rivet or #12 x 3/4" Stitch Screw
- Tube Sealant
- Metal “Z” Closure
- Ultra Low Profile Wood screw
- Butyl Tape
- Ridge/Hip
- Vapor Barrier
- Tube Sealant
VENTED RIDGE

- Clip
- Everseam
- Tube Sealant
- Pop Rivet or #12 x 3/4” Stitch Screw
- Vented “Z” Closure
- Ultra Low Profile Woodscrew
- Butyl Tape
- Ridge/Hip
- Vapor Barrier
- Tube Sealant
ENDWALL COUNTER

- Tube Sealant
- Counter Flashing
- Vapor Barrier
- Ultra Low Profile Woodscrew
- Endwall Trim
- Pop Rivet or #12 x 3/4" Stitch Screw
- Tube Sealant
- Metal “Z” Closure
- Tube Sealant
- Clip
- Everseam
- Ultra Low Profile Woodscrew
SIDEWALL

- Vapor Barrier
- Ultra Low Profile Woodscrew
- Sidewall Flashing
- Pop Rivet or #12 x 3/4” Stitch Screw
- Tube Sealant
- Metal “Z” Closure
- Ultra Low Profile Woodscrew
- Butyl Tape
- Everseam

Siding
SIDEWALL COUNTER

- Tube Sealant
- Counter Flashing
- Vapor Barrier
- Ultra Low Profile Woodscrew
- Sidewall Flashing
- Pop Rivet or #12 x 3/4” Stitch Screw
- Tube Sealant
- Metal “Z” Closure
- Ultra Low Profile Woodscrew
- Butyl Tape
- Everseam
RAKE STARTER “J”

- Tube Sealant
- "J" Starter
- Everseam
- Ultra Low Profile Wood screw
- Rake Trim
- Vapor Barrier
- #10 Wood screw
RAKE CUT PANEL STARTER “J”

- Tube Sealant
- “J” Starter
- Field Bent Everseam Panel
- Ultra Low Profile Woodscrew
- Rake Trim
- Vapor Barrier
- #10 Woodscrew
GABLE

Pop Rivet or #12 x 3/4” Stitch Screw
Tube Sealant

Metal “Z” Closure
Everseam

Ultra Low Profile Woodscrew

Gable Trim

Vapor Barrier

Ultra Low Profile Woodscrew

Cleat
GABLE CUT PANEL

- Tube Sealant
- Pop Rivet or #12 x 3/4" Stitch Screw
- Metal “Z” Closure
- Ultra Low Profile Woodscrew
- Butyl Tape
- Everseam Field Cut
- Gable Trim
- Vapor Barrier
- Ultra Low Profile Woodscrew
- Cleat
FORMED RAKE

- Everseam, field bent
- Ultra Low Profile Woodscrew
- Tube Sealant
- Vapor Barrier
- Residential Eave Trim, bent at 90°
SLIM LINE RAKE

- Tube Sealant
- "J" Starter
- Everseam Panel, field bent
- Ultra Low Profile Woodscrew
- Rake Trim
- Vapor Barrier

Closed in field
FORMED VALLEY

- Everseam
- Clip
- Ultra Low Profile Woodscrew
- Butyl Tape
- Offset Cleat
- Tube Sealant
- Vapor Barrier
- “W” Valley